大家好,今天小编关注到一个比较有意思的话题,就是关于股票价格拟合优度指标的问题,于是小编就整理了3个相关介绍股票价格拟合优度指标的解答,让我们一起看看吧。
拟合优度的计算公式?
对非线性方程:
(1)计算残差平方和Q=∑(y-y*)^2和∑y^2,其中,y代表的是实测值,y*代表的是预测值;
(2)拟合度指标RNew=1-(Q/∑y^2)^(1/2)
Rnew是最近才出现的用于判定非线性回归方程的拟合度的统计参数,现在我还没有看到它的中文名称。之所以用角标new就是为了和线性回归方程的判定系数R2、adjusted R2进行区别。在对方程拟合程度的解释上,Rnew和R2、adjusted R2是等价的,其意义也相同。
对线性方程:
R^2==∑(y预测-y)^2/==∑(y实际-y)^2,y是平均数。如果R2=0.775,则说明变量y的变异中有77.5%是由变量X引起的。当R2=1时,表示所有的观测点全部落在回归直线上。当R2=0时,表示自变量与因变量无线性关系。
相关指数含义?
相关指数R2表示一元多项式回归方程拟合度的高低,或者说表示一元多项式回归方程估测的可靠程度的高低。
事物之间的相互关系:因果关系(两种事物)、共变关系(三种事物)、相关关系(两种事物)。
相关:事物之间存在关系,但又不能直接做因果关系解释时,称事物间的联系为相关。
判断两个因素或变量之间是否有关系,定量地研究这些关系,称为相关分析。
按性质不同,相关可以划分为:正相关、负相关、零相关。
正相关:两个变量向相同的方向变化。即一个变量的值增加,另一个变量得值也增加。
负相关:两个变量向相反的方向变化。即一个变量的值增加,另一个变量的值相应地减少。
零相关:两列变量之间没有关系,即一列变量变动时,另一列变量作无规律变动。
相关系数是一种描述性统计量,它指的是一个变量与另一个变量的变化的对应程度。符号:总体相关系数ρ;样本相关系数r。
直线回归:当一变量随另一变量有规律变化时,它们之间依存变化的数量关系称直线回归。
直线回归分析:据实测值建立一个回归方程,来定量表达两变量间数量依存变化关系的方法和过程。
决定系数表示的是两个变量之间共同方差的比例。用符号表示:
。例如:如果两个变量之间的相关系数r=0.82,那么
=0.67,我们就可以得出结论说,由于两个变量间的线性关系,Y变量的67%的变异可以有X变量中的变异来预测和解释。
拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。度量拟合优度的指标:判定系数(可决系数)
。可决系数的取值范围:[0,1],
越接近1,说明实际观测点离样本线越近,拟合优度越高。
相关系数和相关指数是两个不同的概念,一般是先求相关系数,分析相关性的强弱。然后求回归方程,最后求出相关指数,分析模型的拟合效果[1] 。
拟合优度是什么意思?
拟合优度是指回归直线对观测值的拟合程度。
度量拟合优度的统计量是可决系数(亦称确定系数)R^2。R^2的取值范围是[0,1]。
R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。
R衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。
R等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比。
实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。
因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。
统计上定义剩余误差除以自由度n–2所得之商的平方根为估计标准误。为回归模型拟合优度的判断和评价指标,估计标准误显然不如判定系数R。
R是无量纲系数,有确定的取值范围(0—1),便于对不同资料回归模型拟合优度进行比较;而估计标准误差是有计量单位的,又没有确定的取值范围,不便于对不同资料回归模型拟合优度进行比较。
拟合优度是一个统计术语,是衡量金融模型的预期值和现实所得的实际值的差距。
它是一种统计方法应用于金融等领域,基于所得观测值的基础上作出的预测。换句话说,它是衡量如何将实际观测的数值进行模拟的相关预测。
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。
当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
到此,以上就是小编对于股票价格拟合优度指标的问题就介绍到这了,希望介绍关于股票价格拟合优度指标的3点解答对大家有用。